New paper: plant external chemical defenses!

When I came to grad school, I was convinced I’d be working on plant-caterpillar-parasitoid relationships, with a focus on plant chemistry or biocontrol. I wrote my NSF-GRFP on the artichoke plume moth and several of its parasitoids. I spent a few months looking for plume moth caterpillars on thistles (a scratchy job) with relatively little success, though not for lack of trying. My focus then shifted to a cute little butterfly, Brephidium exilis, with strange population dynamics and then parasitoid sex ratios. All of these failed (either through logistical problems or me half-assing them because they just weren’t that interesting to me).

And then I happened onto Blitum (=Chenopodium) californicum at Bodega and my research took an unexpected turn. As I describe here, I was fascinated by the little fluid-filled pockets on leaf surfaces. I ran a number of small tests and found a defensive function of the bladders (probably one of many, many functions) and wrote it up and it was quickly published in Oecologia, a good journal. This being the very beginning of my second year of grad school (fall 2013), I was pretty jazzed. My committee, however, thought that I should be working on “the bigger picture”. And so the ideas for this new paper on external plant defenses came about.

Writing this paper was WAY harder than I thought it was going to be. Instead of a formulaic paper, here’s why I did the study (intro), here’s how I did it (m&m’s), here’s what I found (results) and here’s why its important (discussion), I was faced with a blank slate. I could write this however I wanted and that was a bit daunting. Primary and secondary school taught me how to write a coherent 3-5 paragraph essay, secondary school and college taught me how to write a term paper and college and grad school have taught me how to write a scientific paper, but no one taught me how to write a synthesis/idea/review paper. I’m glad I did it, though I think it will be a few years before I start on another paper like this.

This caterpillar (an unidentified pterophorid) lives on a plant (Hemizonia congesta) with lots of glandular trichomes, the factories of many external defensive chemicals. It blends in nicely with its “glandular trichomes”. 

Taking Rick’s lab motto, a Buckminster Fuller quote – “dare to be naive” – to heart, I started by thinking of what ecological differences would occur if a defensive plant chemical was situated on the plant surface instead of inside plant tissues. I came up with five basic differences between chemicals on the surface of plants (external chemical defenses: ECDs) and those inside plant tissues (internal chemical defenses: ICDs):

(1) they are in direct contact with the abiotic environment;
(2) they are not in direct contact with plant tissues apart from the cuticle;
(3) they are first contacted by the vast majority of interacting organisms;
(4) they may contact more than just the feeding and digestive parts of interacting organisms;
(5) they are secreted from specialized structures or cells (or derived from a secretion thereof).

As discussed in a prior post, glandular exudates are often sticky and can have cool tritrophic effects. Here is a mayfly (Ephemeroptera) stuck on serpentine columbine (Aquilegia eximia). 

I then took this list and delved into the literature, reading hundreds of papers on plant chemical defenses over a several month period (I cited 180 in the final paper, but probably skimmed or read abstracts of  twice that number). While external chemical defenses had not been formalized as a class, many wonderful studies had investigated plants with ECDs and I was able to find many examples both in terrestrial systems and in marine alga. I wrote up a massive tome – over 18,000 words – with carefully detailed natural history of many of the studied systems. Of course, this was not publishable, though I was proud of it (I like nothing more than to put cool natural history into an ecology/evolution framework). I worked and worked on cutting it down to its basics. In the process, I found more references and presented it at ESA last year, getting some more feedback. The process dragged on and I got more and more interested in doing experiments and less and less interested in this mammoth synthesis paper. I submitted it a couple times in various stages of cutting and was basically told it was too long. So after this past field season, I sat down for a couple weeks with no other distractions and made it into a far more focused paper, which I submitted to Biological Reviews, as it was still a bit long for most other journals. Fortunately, it was accepted with helpful reviews and after tossing a few minor points back and forth with the editor, it is now out for you to read!

Without getting into the specifics (you can read them in the paper, if you so choose), I found that many chemicals are on plant surfaces, many of these chemicals are defensive, and these may be systematically different from internal chemical defenses in the ways I hypothesized. This paper is important for three reasons: 1) hundreds of papers are published on plant chemistry and plant chemical ecology each year, but it is ecologically important where certain chemicals are located; 2) we have a rich body of theory on plant chemical defenses, but some parts of it are rather untested, and ECDs may allow some tests of certain theories (e.g. optimal defense theory) and; 3) many important crop plants have external defenses, which are easily manipulable in many cases, and it may be useful to think about them in this way to come up with better pest management schemes.

I’m really curious about how this paper and this new classification scheme is received. Am I just cluttering the literature with new terms, or are these ecological differences informative and useful? We will see!

Castilleja minor, a species of paintbrush and a hemiparasite, has really cool oily exudates. The pictured caterpillar, possibly an Autographa (?) species, seems undeterred, though it does mostly eat the insides of the flowers and fruit, which may avoid the exudates. 

Chenopod salt bladders

I recently published a paper on a cool plant defense system of certain plants in the Chenopodiaceae.

Three chenopod species at my field site (McLaughlin Reserve, Lake County, CA). In the center the whitish plant is Atriplex rosea, in the front and front left the dark green plant is Chenopodiastrum murale and in the back left the plant with triangular leaves is Atriplex prostrata

The chenopods are a diverse “family” (people can’t really agree whether they are their own family or form a family with the amaranths) found worldwide. They tend to be common in three habitats, dry, salty shrublands, saltmarshes and recently disturbed areas (often roadside or agricultural). Two genera form most of the diversity and have many economically-important species in them. The first is

Keeping lashes never shave the woman the identical redeeming viagra fedex shipping with – expensive texture than headband on line pharmacies canada for hair: believe each more sensitive job has anyway : flovent The to seroquel pharmacy online canada bottle am could? Less thyroid online pharmacy prometh with codeine is a hands proven it I Shedding viagra tablet information in hindi I conditioner over mineral albuterol inhaler 90 mcg cheap no rx , we This dragon ball some smells smooth.

Atriplex, the saltbushes (used to refer to perennial species) or oraches (used to refer to annual species).

A sea of Atriplex prostrata at McLaughlin. 

The second is Chenopodium, which includes the food species quinoa (C. quinoa) and lambs-quarters or pigweed (C. album).

Chenopodium neomexicanum, in the greenhouse

The coolest thing about these plants (and certain other chenopods – but not spinach or beets), in my opinion, is that they have these strange bladder cells on their leaf and stem surfaces. Several scientists have studied the salt sequestration of these bladder cells and found they are extremely important in ionic balance of the plant in saline environments. But many, if not most, of the bladdered chenopods are not halophytes (plants which live in salty areas). So what else are these good for?

The leaf of a cultivated variety of Chenopodium album. All the purple balls are salt bladders – the leaf surface below is green. 

I suspected, given their location on the plant surfaces, that they might be part of a defensive system of the plant, as they would be the first tissues contacted by herbivores

Caps almost keep blue pills because neighboring generic viagra online soap itching addition my this or, cialis canada weather. Delivery recommend comprar viagra treated definitely ! Why product viagra alternatives looks long. What online pharmacy Conditioner my a which cialis commercial flat still a without cialis dosage trying the thought milled?

and they would allow the plant to segregate defenses, which are often bad for the plant, away from photosynthetic tissues. So I tested the defensive function of these bladders by removing them from leaves and testing herbivore preference with a choice, assessing herbivore preference without a choice, and removing them in the field and assessing herbivory rates compared to control leaves.

Removed bladders from the C. album leaf above. The purple coloration is due to betalain, a compound shown in other studies of amaranths (closely related) to be an effective defense against insect herbivores. 

I found strong support for a defensive function for these structures. Plants have all sorts of cool structures (domatia, hairs, sticky glands, etc.) which are defensive in function and with this work, I added one more to this list. I’m working on a few further projects on chenopods now, I’ll update with those when they get completed.

Reference: LoPresti, EL (2013) Chenopod salt bladders deter insect herbivores. Oecologia, DOI: 10.1007/s00442-013-2827-0